Q-Gaussian process - définition. Qu'est-ce que Q-Gaussian process
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Q-Gaussian process - définition


Q-Gaussian process         
q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations.
Gaussian process         
  • Autocorrelation of a random lacunary Fourier series
  • Gaussian Process Regression (prediction) with a squared exponential kernel. Left plot are draws from the prior function distribution. Middle are draws from the posterior. Right is mean prediction with one standard deviation shaded.
  • The effect of choosing different kernels on the prior function distribution of the Gaussian process. Left is a squared exponential kernel. Middle is Brownian. Right is quadratic.
STOCHASTIC PROCESS SUCH THAT EVERY FINITE COLLECTION OF RANDOM VARIABLES HAS A MULTIVARIATE NORMAL DISTRIBUTION
Gaussian stochastic process; Gaussian processes; Gaussian Process; Gaussian Processes; Applications of Gaussian processes; Bayesian Kernel Ridge Regression
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e.
Gaussian binomial coefficient         
FAMILY OF POLYNOMIALS
Q-binomial coefficient; Q-binomial; Gaussian coefficient; Gaussian binomial; Q-binomial theorem; Gaussian polynomial; Gaussian polynomials; Gaussian binomial coefficients; Q-binomial coefficients
In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as \binom nk_q or \begin{bmatrix}n\\ k\end{bmatrix}_q, is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over a finite field with q elements.